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We show that even under ideal conditions (no thermal noise or dark current,
continuously-variable intensity lasers, perfectly accurate photon counters), R, is, at
most, one nat per photon in optical systems which use photon counting techniques. Since
even under less ideal circumstances channel capacity is infinite, this is a surprising and in

some ways disappointing result.

l. Introduction

In a recent report (Ref. 1), it was shown that the R,-
parameter for the noiseless optical channel with pulse/no pulse
modulation is exactly one nat per photon. Since R, is widely
believed to measure the maximum rate at' which “practical”
reliable communication is possible, and since 1 nat/photon is
disappointingly small,! it is natural to ask what R, would be if
more general modulation schemes were used. In this article we
will show that even with infinitely variable amplitude-
modulation and perfectly accurate photon counters, R,
remains equal to one nat per photon. This result supports
Pierce’s (Ref. 2) judgement that, “practically, the rates we can
attain by photon counting will be limited by how elaborate
codes we can instrument rather than by thermal photons.”

In Section II, we will give a definition of R which applies
to any memoryless time-discrete channel whose output alpha-
bet is finite or countable. Also, we will give a simple upper
bound on R, which applies to any such channel. Then, in

1 Disappointing (and very surprising) since the channel capacity, i.e., the
maximum rate at which reliable communication is possible (questions
of practicality aside) is infinite! See (Ref. 1) or (Ref. 2) for a proof of
this fact.
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Section III, we will use this bound as applied to the specific
channel model appropriate for noiseless optical communica-
tion to show that R, <1 nat per photon. Finally we will argue
that, in fact, R, = 1 nat per photon.

il. The R,-Parameter for a General Channel

Consider a time-discrete memoryless channel with input
alphabet 4 and output alphabet B. We assume B is finite or
countable. For xed, yeB, we denote the probability that y will
be received, given that x is transmitted, by p(yix).

For each pair of input letters x,,x, we define the Bhatta-
charyya distance between them as

dy(x %) = ~log D VPO POR). (1)

yeB

If now X is a random variable taking values in the set 4, and if
X, ,X, are independent random variables, both with the same
distribution as X, we define

R,(X) = -log E(exp - dg(X . X)) . )]



Finally, the quantity R, is defined as:

R, = supRO(X), ?3)
X

the supremum in Eq. (3) being taken over all possible probabil-
ity distributions on the set 4 (see Ref. 1, p. 68 and Ref. 3).

The quantity R has dimensions nats! per channel use, and
is second only to channel capacity itself as a measure of the
channel’s capabilities. In particular, it is widely believed to be
the rate beyond which the implementation of reliable com-
munication systems become extremely difficult (Ref. 4).

We conclude this section with a simple and useful upper
bound on R,. Since the function f(f)=e™* is convex, it
follows from Jensen’s inequality (Ref.1, Appendix B) that
E(exp - d) = exp - E(d), and hence from Eq. (2) that

R (X)<E(dg (X,.X,)) Q)
R, <sup E@y(X,,X,)) ®)
X

ll. R, = 1 Nat/Photon for Optical Channels

We assume that our optical communication system works as
follows. The time interval during which communication takes
place is divided into many small intervals (“slots”) of duration
t, seconds each. The transmitter is a semiconductor laser
which is pulsed during each slot. The intensity of the pulse in
the i-th slot is denoted by x;; this means that the expected
number of photons emitted is x;. The intensity can be any
nonnegative real number, but the actual number of photons
emitted is, of course, an integer. Because of the Poisson
statistics governing photon emissions, the probability that
exactly k& photons will be emitted by the laser during the i-th
slot is e *ix¥/k! The receiver is a photon counter, which we
assume correctly reports the exact number of photons emitted
during each slot.

Thus described, the optical channel fits the model of the
previous section. The input alphabet A4 is the set of nonnega-
tive real numbers; the output alphabet B is the set of nonnega-
tive integers; and if xed is transmitted, the probability that
keB is received is

xk

plkk) = e 5 ©)

! Throughout, all logarithms will be natural.

The first step in computing R, for this channel is the
computation of the Bhattacharyya distance dg(X,,X,).
According to Egs. (1) and (6)
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Hence
dplx,,x,) = Wx, =)' ®)

Note also that if we take only the term &k =0 in the sum in
Eq. (7), we get the estimate

dB(x1 ,x2) < (x1 + x2)/2

€]
It thus follows immediately from the bound Eq. (4) that
Ry(0) <E(X) (10)

In words, Eq. (10) says that if the average laser intensity is
f photons per slot, then the R ,-parameter is at most § nats per
slot. In units of nats per photon, then, we have

R, <1 nat/photon (11)

Note that the bound Eq. (11) was derived under very
generous assumptions about the kind of signalling equipment
available (infinitely variable laser intensity, perfectly accurate
photon counters). We shall now show that, in fact, R, = 1
nat/photon, even if only two laser intensities (“on” and “off™)
are available, and if we replace the ultrasensitive photon coun-
ter with a simple photon detector, which emits a 1 if it is
struck by one or more photons in a given time slot, and a 0 if
it is not. An indirect proof that R, =1 in this situation was
given in Ref. 1. Here we will give a different proof, using g-ary
pulse position modulation.

63



The idea is to select a fixed positive integer g, and to divide
the transmission interval into consecutive blocks of g slots
each. In each such block, the laser is pulsed exactly once, so
that there are exactly g basic patterns in the signalling alpha-
bet. For example, with g =4, if we denote “no pulse” by 0
and “‘pulse” by 1, these patterns are 1000,0100,0010,0001.
There are, however, g + 1 possibilities for the received pattern,
because the laser may emit no photons when it is pulsed. The
probability that a given transmitted pattern will be received in
error is just the probability that the laser will emit no photons
during a single pulse: e, if the laser’s intensity is A.

Thus, the appropriate channel model for this situation has
input alphabet (illustrated for ¢ = 4) 4 = {1000,0100,0010,

0001}and output alphabet B = {0000,1000,0100,0010,0001}.
The transition probabilities are

pIx) =1-e™ ifx =y

e ™ ify = 0000

0 otherwise

From this it easily follows that the Bhattacharyya distances
are given by

dg (x,,x,) = 0ifx, = x,
= Nifx, #x, (12)
Hence by Eq. (4), we have
Ry (X)<\-P{X #X, } (13)

the units in Eq. (13) being nats per channel use. It is easy to
see that P{X, # X, }< (g - 1)/q, with equality if and only if
X is equally likely to be any of the ¢ channel input symbols.
Thus,

Ry (X) <A 1(:{—1* (nats per channel use) (14
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or, since each channel use requires A photons on the average,

1

R, <q—;~ nats per photon.

(15)
On the other hand, if X is uniformly distributed on the input
alphabet, a simple calculation gives

A

= l ___.q_l -A
R, (X) xlog(q+ p; (e )) nats/photon. (16)

The limit of Eq. (16) as A —0 is easily seen to be (g - 1)/q,
and so we conclude that for g- ary pulse-position modulation,

J—

R, =4 nats/photon.

an
(For completeness, we remark that a similar calculation shows
that the capacity for ¢ - PPM is

R, = logq nats/photon.) (18)

Equation (17) shows that by taking g sufficiently large, R 0
can be made as close to 1 as desired. This fact, combined with
Eq. (11), shows that R, =1, as claimed.

We conclude with two remarks. First, a close examination
of our calculations shows that the only possible input distribu-
tions that approach R, =1 have both average and peak inten-
sity very close to zero. This suggests that efficient coding
schemes will have the same property.

Second, note that the bound Eq.(9) applies even if we
allow pulsing at different frequencies, since Eq.(9) merely
reflects the ambiguity at the receiver if no photons are
received. Thus, the bound R <1 holds even for frequency-
modulated direct-detection systems. Of course if we use differ-
ent frequencies the number of nats per photon is no longer
proportional to the number of nats per joule, which is of
course the basic unit here. However, a multifrequency system
operating at R nats per photon would consume more energy
per transmitted nat than a monochromatic system using the
lowest frequency of the multifrequency system operating at R
nats per photon. And since R, =1 for both systems, we would
expect monochromatic systems to be more efficient.
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